Without nonumber command(not best method)

Here, the derivative of a complex function is calculated. The equation is broken at logical points, with each term of the derivative aligned on separate lines.

$$
\begin{align*}
\frac{d}{d x}\left(x^{4} \sin \left(x^{2}\right)-\frac{1}{x^{2}+1}+\ln (x)\right)= & 4 x^{3} \sin \left(x^{2}\right)+2 x^{5} \cos \left(x^{2}\right)+ \tag{1}\\
& \frac{2 x}{\left(x^{2}+1\right)^{2}}+\frac{1}{x} \tag{2}
\end{align*}
$$

With nonumber command

Here, the derivative of a complex function is calculated. The equation is broken at logical points, with each term of the derivative aligned on separate lines.

$$
\begin{align*}
\frac{d}{d x}\left(x^{4} \sin \left(x^{2}\right)-\frac{1}{x^{2}+1}+\ln (x)\right)= & 4 x^{3} \sin \left(x^{2}\right)+2 x^{5} \cos \left(x^{2}\right)+ \\
& \frac{2 x}{\left(x^{2}+1\right)^{2}}+\frac{1}{x} \tag{3}
\end{align*}
$$

Multivariable Integral

This example demonstrates a multivariable integral over a domain DD. The integral is split into two parts, each computed over different intervals,

$$
\begin{align*}
\iint_{D}\left(x^{2}+y^{2}\right) d x d y= & \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right) d x d y+ \\
& \int_{1}^{2} \int_{0}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right) d x d y \tag{4}
\end{align*}
$$

Advanced Derivative with Trigonometric Functions

Here, a derivative of a function involving both polynomial and trigonometric terms.

$$
\begin{align*}
f(x)= & \sin (x)+\cos (x)+\tan (x)+ \\
& \sec (x)+\csc (x)+\arcsin (x)+\arccos (x)+\arctan (x)
\end{aligned} \quad \begin{aligned}
\frac{d}{d x}\left(x^{3} \cos \left(x^{2}\right)+\frac{\tan (x)}{x}\right)= & 3 x^{2} \cos \left(x^{2}\right)-2 x^{4} \sin \left(x^{2}\right)+ \tag{5}\\
& \frac{\sec ^{2}(x)}{x}-\frac{\tan (x)}{x^{2}}
\end{align*}
$$

