You need to use `\pm`

command to get latex plus-minus symbol. You do not need to pass any argument in this command. So, take a look at this syntax below

Properties | Value |
---|---|

Symbol | Plus Minus |

Argument | No |

Command | `\pm` |

Example | `\pm` → ± |

For example, when you determine the square root of a number, you have to use plus-minus sign.

```
\documentclass{article}
\usepackage{xcolor}
\begin{document}
\[ p=\sqrt{a^{2}}={\color{red}\pm}\,a \]
\[ x= \frac{-b\,{\color{red}\pm}\sqrt{b^2 -4ac}}{2a} \]
\[ \frac{\partial y}{y}= {\color{red}\pm}\left( n\frac{\partial u}{u} + m\frac{\partial v}{v} \right) \]
\end{document}
```

**Output :**

If you look at the program above, you can see that the`\sqrt{}`

command is used for the square root, and a² is passed as an argument.

## Plus-minus symbol in text mode

You cannot use default `\pm`

command in direct text mode. However, with the `textcomp`

package, you can represent plus and minus symbols in text.

And, the most important command for this is `\textpm`

.

```
\documentclass{article}
\usepackage{textcomp}
\begin{document}
Use plus-minus symbol in text mode : \textpm
\end{document}
```

**Output :**

Use plus-minus symbol in text mode: ±

As you may know, `\[ \]`

symbols are not used on both sides of the command in text mode.

And when you use a math mode command in text mode, you use single dollars on both sides of command. For example

```
\documentclass{article}
\begin{document}
Use plus-minus symbol in text mode: $\pm$
\end{document}
```

**Output :**

Use plus-minus symbol in text mode : ±

## Minus-Plus symbol in latex

Mathematically, when a character with a plus-minus sign `±`

is multiplied by a minus sign `-`

, the plus-minus sign before that character becomes a minus-plus sign.

Properties | Value |
---|---|

Symbol | Minus plus |

Argument | No |

Command | `\mp` |

Example | `\pm` → ∓ |

In the same way, to get minus-plus symbol, you need to use `\mp`

command instead of `\pm`

command.

For example, you notice that when a plus-minus character is moved to the opposite side of a mathematically equal, it becomes a minus-plus symbol. So, look at this LaTeX program below

```
\documentclass{article}
\begin{document}
\[ a\pm b=0 \]
\[ \therefore a=\mp b \]
\end{document}
```

**Output :**

## Use MnSymbol, fdsymbol, boisik, and stix packages for this symbol

Also, latex has multiple packages to represent this symbol. However, the interesting thing is that the same command `\pm`

is present in each package.

```
\documentclass{article}
\usepackage{MnSymbol,fdsymbol,boisik,stix}
\begin{document}
\[ a \pm b = c \]
\[ p \pm q = r \]
\end{document}
```

**Output :**

Hopefully, you understand how to use the plus-minus or minus-plus symbol with the help of latex.

And no document has been created in this tutorial, only the equation is presented in front of you.

## Practice Quiz

What will be the output according to the following code?

```
\documentclass{article}
\begin{document}
\[ \sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}} \]
\end{document}
```

- \(\sin\left(\cfrac{\theta}{2}\right) = \pm\sqrt{\cfrac{1-\cos\theta}{2}}\)
- \(\sin\left(\cfrac{\theta}{2}\right) = \pm\sqrt{\cfrac{1{\color{red}-}\cos\theta}{2}}\)
- \(\sin\left(\cfrac{\theta}{2}\right) = \mp\sqrt{\cfrac{1-\cos\theta}{2}}\)
- \(\sin\left(\cfrac{\theta}{2}\right) = \mp\sqrt{\cfrac{1+\cos\theta}{2}}\)

What will be the output according to the following code?

```
\documentclass{article}
\begin{document}
\[ \cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1+\;\cos\theta}{2}} \]
\end{document}
```

- \(\cos\left(\cfrac{\theta}{2}\right) = \pm \sqrt{\cfrac{1+\cos\theta}{2}}\)
- \(\cos\left(\cfrac{\theta}{2}\right) = \pm \sqrt{\cfrac{1+\;\cos\theta}{2}}\)
- \(\cos\left(\cfrac{\theta}{2}\right) = \pm \sqrt{\cfrac{1\;+\;\cos\theta}{2}}\)
- \(\cos\left(\cfrac{\theta}{2}\right) = \pm \sqrt{\cfrac{1\;+\sin\theta}{2}}\)

What will be the output according to the following code?

```
\documentclass{article}
\begin{document}
\[ \sin\theta \,\pm \;\cos\theta \]
\end{document}
```

- \(\sin\theta \pm \;\;\cos\theta\)
- \(\sin\theta\pm \cos\theta\)
- \(\sin\theta \;\pm \;\cos\theta\)
- \(\sin\theta\,\pm\;\cos\theta\)