All trigonometric functions related to sin are represented in this tutorial. A simple command to represent sin is `\sin`

. You can convert to inverse sin using superscript with this command like `\sin^{-1}`

.

```
\documentclass{article}
\begin{document}
\[\sin\theta ,\, \sin^{-1}(\theta),\, \arcsin(\theta), \; \sinh\left(\frac{n\theta}{k}\right)\]
\[\sin{\frac{\theta}{n}},\,\sin^{-1}\left(\pi-\frac{\theta}{n}\right)\]
\[\int\limits_{\pi}^{\frac{\pi}{2}}\frac{\sin\theta}{\theta}\mathrm{d\theta},\,\int\limits_{\pi}^{\left(\pi-\frac{1}{2}\right)}\hspace{-10px}\sin^{-1}\left(\frac{\sin\theta}{\theta}\right)\mathrm{d\theta}\]
\[\lim_{\theta \to 0}\frac{\sin\theta}{\theta} , \,\lim_{\theta \to 0} \frac{\sin(\pi-n\theta)}{\theta}\]
\end{document}
```

**Output :**

Not all functions are stocked by default in this tutorial.

## Use physics package

Second option, we have is `physics`

package which contains all trigonometric functions. and can add direct powers or superscripts to commands using optional arguments.

```
\documentclass{article}
\usepackage{physics}
\begin{document}
\[ \sin(x) \quad \sinh(x) \quad \arcsin(x) \quad \asin(x) \]
\[ \sine \quad \hypsine \quad \arcsine \quad \asine \]
\[\sin[-1](n\theta) \quad \sine^{-1}\left(\frac{\theta}{n}\right) \quad \arcsin(\pi - \frac{\theta}{n})\]
\[ \sin[n](\frac{1}{\theta}) \quad \int\limits_{\theta_1}^{\theta_2}\frac{\sin[n](\theta)}{k}\,d\theta \quad \lim_{\theta \to 0}\frac{\sin[k](n\theta)}{\theta} \]
\end{document}
```

**Output :**

Third is my best method which has no limitations. This method will not return a direct function command but rather an mathematics function font.

## Use mathrm and operatorname command

`mathrm{arg}`

and `operatorname{arg}`

, in which the function name must be passed as an argument. Even if `operatorname{arg}`

handles space. But, `mathrm{arg}`

needs to add a little space on both sides.

```
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\[ a \sin b \quad a \mathrm{sin} b \quad a \operatorname{sin} b \]
\[ a \sin b \quad a \, \mathrm{sin} \, b \quad a \operatorname{sin} b \]
\[ a \arcsin b \quad a \, \mathrm{arcsin} \, b \quad a \operatorname{arcsin} b \]
\[ a \sin^{-1}\left(\frac{\theta}{n}\right) \quad a \, \mathrm{sin}^{-1}\left(\frac{\theta}{n}\right) \quad a \operatorname{sin}^{-1}\left(\frac{\theta}{n}\right)\]
\end{document}
```

**Output :**

Suppose you are creating a document that contains many mathematical functions. In that case, you can define a new math function using this `opratorname{arg}`

or `mathrm{arg}`

with the newcommand.

```
\documentclass{article}
\usepackage{amsmath}
\newcommand{\func}[1]{\operatorname{#1}}
\newcommand{\funct}[1]{\,\mathrm{#1}\,}
\begin{document}
\[ a\func{sin}\theta \quad b\func{arcsin}\phi \quad m\func{sinh}\theta \quad n \func{asin}\theta \]
\[ a\funct{sin}\theta \quad b\funct{arcsin}\phi \quad m\funct{sinh}\theta \quad n \funct{asin}\theta \]
\[\frac{\func{sin}\theta}{\funct{tan}\theta} = \cos\theta \quad \frac{\func{sin}^2\theta}{\funct{tan}\theta} = \frac{\sin2\theta}{2}\]
\end{document}
```

**Output :**

You don’t need to use separate commands. Just pass the function name into the new define command and the job is done.