How do you write limit(lim) in LaTeX?

The \lim command is used to represent the word lim. However, an arrow and subscript will be required to define the whole syntax.

In this case, there is a to command to represent the “limit arrow”.

The generic LaTeX command for limits is \lim command which displays partial derivative notation lim.

   A limit is the value that a function (or sequence) approaches as the input (or index) approaches some value. Suppose $ f $ is a real-valued function and $ \ell $ is a real number. Intuitively speaking, the expression
   \[\lim _{x \to \ell }f(x)=L  \]
   means that $ f(x) $ can be made to be as close to $ \ell $ as desired, by making $ x $ sufficiently close to $ \ell $

Output :

use lim command in latex.

Below is a table showing the various limit commands and their outputs followed by examples demonstrating their usage.

Limits LaTeX commands Output
\lim lim
\liminf use liminf command in latex.
\limsup lim sup
\varinjlim Use varinjlim command.
\varprojlim Use varprojlim command.
\varlimsup Use varlimsup command.
\varliminf Use varliminf command.
\projlim proj lim

Other definitions and Demonstrations of limits

    Let $ (a_n)_{n \in \mathbb{N}} $ be a sequence of real numbers. We define 
      \item Limit Superior denoted by $ \limsup  $ 
       \[ \limsup_{n \to \infty} a_n := \lim_{n \to \infty}(\sup\{a_n|k\geq n\}) \]
      \item Limit inferior denoted by $ \liminf  $
       \[ \liminf_{n \to \infty} a_n := \lim_{n \to \infty}(\inf\{a_n|k\geq n\}) \]

Output :

Use of lim in latex.

Other notations for \limsup are \liminf are:

  • limsup and liminf command.\varinjlim (varinjlim command output.) corresponds to the direct limit.
  • \varprojlim (varinjlim command output.) corresponds to the inverse limit. The inverse limit is also known as the projective limit and the LaTeX command for it is \projlim which typesets proj lim.


Below are some examples using some kind of limit with some mathematical equations, by which you can easily understand it.
Example 1:

   Let $ f $ be defined on an open interval I, and$  c \in I $. Then the derivative of $ f $ at $ c $ is 
   \[ \lim_{x \to c}\frac{f(x) - f(c)}{x - c} \]
   provided that this limit exists.

Output :

Use of lim in latex example_1 output.

Example 2:

   Some special limits 
    \item $ \lim_{x \to 0}\frac{\sin x}{x} = 1 $ 
    \item $  \lim_{x \to 0}\frac{1 - \cos x}{x} = 0 $ 
    \item $ \lim_{x \to \infty} \left(1  + \frac{1}{x}\right)^x = e  $
    \item $ \lim_{n \to \infty} \frac{n+1}{n} = 1 $

Output :

Use of lim in latex example_2 output.

Example 3:

   Given $ x_k = \frac{(1)^k}{k}, \quad k \in \mathbb{N}  $
   \[\varliminf_{k \to \infty}  \frac{(1)^k}{k} = \lim_{n \to \infty}\inf_{k \geq n}\frac{(-1)^k}{k} = \lim_{n \to \infty} = \left\{ \begin{array}{ll}
   \frac{-1}{n}, & \text{if $ n = 2m+1 $}\\ 
   \frac{-1}{n+1}, & \text{if $ n = 2m $}
   \end{array}\right\} = 0, \] 
   \[ \varlimsup_{k \to \infty}  \frac{(1)^k}{k} = \lim_{n \to \infty}\sup_{k \geq n}\frac{(-1)^k}{k} = \lim_{n \to \infty} = \left\{ \begin{array}{ll}
   \frac{1}{n}, & \text{if $ n = 2m $}\\ 
   \frac{1}{n+1}, & \text{if $ n = 2m+1 $}
   \end{array}\right\} = 0. \]

Output :

Use of lim in latex example_3 output.

Example 4:

   Given an inverse system $ ((A_{i})_{i \in I},(f_{ij})_{i\leq j\in I}) $ as a particular subgroup of the direct product of the $ A_{i} $'s, we define the inverse limit(the projective limit)
   \[ A=\varprojlim _{i\in I}{A_{i}}=\projlim _{i\in I}{A_{i}}= \left\{\left.{\vec{a}}\in \prod_{i\in I}A_{i}\;\right|\;a_{i}=f_{ij}(a_{j}){\text{for all }}i\leq j\; {\text{in}}\; I\right\}. \]
   Given a direct system $ \langle A_{i},f_{{ij}}\rangle $, The direct(inductive) limit denoted by  $ \varinjlim A_{i} $ and is defined as 
   \[ \varinjlim A_{i}=\bigsqcup _{i}A_{i}{\bigg /}\sim  \]			
   Its underlying set is the disjoint union of the $ A_{i} $\,'s modulo a certain equivalence relation $ \sim  $

Output :

Use of lim in latex example_4 output.


This web article shows all the uses of Limit. And the table has been created keeping in mind the combination of the types of limits and the output so that you can easily understand it.

Share tutorial

Don't forget to share if I have added any value to your education life. See you again in another tutorial. thank you!

Facebook iconTwitter iconWhatsapp iconPinterest icon

Md Jidan Mondal

LaTeX expert with over 10 years of experience in document preparation and typesetting. Specializes in creating professional documents, reports, and presentations using LaTeX.

Leave a Comment

Your email address will not be published. Required fields are marked *