max function or symbol is printed in a latex document using the default \max
command. There are various structural uses of the max function which are nicely explained in this tutorial.
Symbol | Max |
---|---|
Type of symbol | Mathematics |
Package | No |
Argument | No |
Latex command | \max |
Example | \max(a,b) → max(a,b) |
All kinds of brackets are used when using this symbol or function.
\documentclass{article}
\begin{document}
$$ \max \{a,b\} $$
$$ \max \left \{0,\frac{1}{x} \right\} $$
$$ \max (x,y) = \max (y,x) $$
$$ \max (x_1,x_2] = x_2 $$
$$ \max (A):=a $$
\end{document}
Output :
Large expressions are passed in Max. And this symbol is used as subscripted.
\documentclass{article}
\begin{document}
$$ \alpha = \max \{f(x):x=1,\dots, n\} $$
$$ r_{\max} = p_{\max} +q_{\max} $$
$$ \max\{f(x)+g(x)\}\leq \max\{f(x)\}+\max\{g(x)\} $$
$$ \max g(f(x))=g(\max f(x)) $$
\end{document}
Output :
Subscripted expression with max function in LaTeX
If you use any expression as subscripted with this symbol, it will be at the bottom of the symbol.
\documentclass{article}
\begin{document}
$$ \max_{x\epsilon s} $$
$$ \max_{x=k} $$
$$ \max_i $$
\end{document}
Output :
To get a subscripted expression with Max symbol as output, single dollar should be used instead of double dollar. Which is used for inline math mode.
\documentclass{article}
\begin{document}
$ \max_{x\epsilon s} $\\[6pt]
$ \max_{x=k} $\\[6pt]
$ \max_i $
\end{document}
Output :
LaTeX max over x and logical expression
In this case, you can use the subscript x with the \max
command and also use the \limits
command before the subscript. Both methods are valid.
\documentclass{article}
\begin{document}
$$ \max_x f(x) $$
$$ \max_x(4x^2 - x^4)=\{4\} $$
$$ \max\limits_{x\epsilon \;a_1} f(x) \leq \max_{x \epsilon \; a_2} f(x) $$
$$ \max\limits_i x_i \geq \frac{1}{n} \sum\limits^n_{i=1} x_i $$
\end{document}
Output :
If you use inline math mode for text then you must use \limits
command. Otherwise, it will remain as a subscript.
\documentclass{article}
\begin{document}
$ \max_{x\epsilon S_1}f(x) $\\[6pt]
$ \max_{x\epsilon S_2}f(x) $\\[6pt]
$ \max\limits_{x\epsilon S_1}f(x) $\\[6pt]
$ \max\limits_{x\epsilon S_2}f(x) $
\end{document}
Output :